Copied to
clipboard

G = C42.413D4order 128 = 27

46th non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.413D4, C42.163C23, C4.55(C2×D8), (C2×C4).17D8, C4⋊C846C22, C41D4.14C4, C4.D820C2, C4.75(C2×SD16), (C2×C4).26SD16, C42.104(C2×C4), C4.6(C4.D4), (C22×D4).11C4, (C22×C4).236D4, C4.20(D4⋊C4), C4.108(C8⋊C22), C4⋊M4(2)⋊19C2, C42.12C421C2, C41D4.126C22, (C2×C42).207C22, C22.26(D4⋊C4), C23.181(C22⋊C4), C2.11(C23.37D4), (C2×D4).30(C2×C4), (C2×C41D4).2C2, C2.14(C2×D4⋊C4), (C2×C4).1234(C2×D4), C2.18(C2×C4.D4), (C22×C4).229(C2×C4), (C2×C4).157(C22×C4), (C2×C4).245(C22⋊C4), C22.221(C2×C22⋊C4), SmallGroup(128,277)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.413D4
C1C2C22C2×C4C42C2×C42C2×C41D4 — C42.413D4
C1C22C2×C4 — C42.413D4
C1C22C2×C42 — C42.413D4
C1C22C22C42 — C42.413D4

Generators and relations for C42.413D4
 G = < a,b,c,d | a4=b4=1, c4=a2b2, d2=b, ab=ba, cac-1=a-1, ad=da, cbc-1=b-1, bd=db, dcd-1=a2b-1c3 >

Subgroups: 492 in 172 conjugacy classes, 56 normal (26 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C42, C2×C8, M4(2), C22×C4, C2×D4, C2×D4, C24, C4×C8, C22⋊C8, C4⋊C8, C4⋊C8, C2×C42, C41D4, C41D4, C2×M4(2), C22×D4, C22×D4, C4.D8, C4⋊M4(2), C42.12C4, C2×C41D4, C42.413D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, D8, SD16, C22×C4, C2×D4, C4.D4, D4⋊C4, C2×C22⋊C4, C2×D8, C2×SD16, C8⋊C22, C2×C4.D4, C2×D4⋊C4, C23.37D4, C42.413D4

Smallest permutation representation of C42.413D4
On 32 points
Generators in S32
(1 32 18 9)(2 10 19 25)(3 26 20 11)(4 12 21 27)(5 28 22 13)(6 14 23 29)(7 30 24 15)(8 16 17 31)
(1 11 22 30)(2 31 23 12)(3 13 24 32)(4 25 17 14)(5 15 18 26)(6 27 19 16)(7 9 20 28)(8 29 21 10)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 21 11 10 22 8 30 29)(2 28 31 7 23 9 12 20)(3 19 13 16 24 6 32 27)(4 26 25 5 17 15 14 18)

G:=sub<Sym(32)| (1,32,18,9)(2,10,19,25)(3,26,20,11)(4,12,21,27)(5,28,22,13)(6,14,23,29)(7,30,24,15)(8,16,17,31), (1,11,22,30)(2,31,23,12)(3,13,24,32)(4,25,17,14)(5,15,18,26)(6,27,19,16)(7,9,20,28)(8,29,21,10), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21,11,10,22,8,30,29)(2,28,31,7,23,9,12,20)(3,19,13,16,24,6,32,27)(4,26,25,5,17,15,14,18)>;

G:=Group( (1,32,18,9)(2,10,19,25)(3,26,20,11)(4,12,21,27)(5,28,22,13)(6,14,23,29)(7,30,24,15)(8,16,17,31), (1,11,22,30)(2,31,23,12)(3,13,24,32)(4,25,17,14)(5,15,18,26)(6,27,19,16)(7,9,20,28)(8,29,21,10), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21,11,10,22,8,30,29)(2,28,31,7,23,9,12,20)(3,19,13,16,24,6,32,27)(4,26,25,5,17,15,14,18) );

G=PermutationGroup([[(1,32,18,9),(2,10,19,25),(3,26,20,11),(4,12,21,27),(5,28,22,13),(6,14,23,29),(7,30,24,15),(8,16,17,31)], [(1,11,22,30),(2,31,23,12),(3,13,24,32),(4,25,17,14),(5,15,18,26),(6,27,19,16),(7,9,20,28),(8,29,21,10)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,21,11,10,22,8,30,29),(2,28,31,7,23,9,12,20),(3,19,13,16,24,6,32,27),(4,26,25,5,17,15,14,18)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4H4I4J8A···8H8I8J8K8L
order12222222224···4448···88888
size11112288882···2444···48888

32 irreducible representations

dim1111111222244
type++++++++++
imageC1C2C2C2C2C4C4D4D4D8SD16C4.D4C8⋊C22
kernelC42.413D4C4.D8C4⋊M4(2)C42.12C4C2×C41D4C41D4C22×D4C42C22×C4C2×C4C2×C4C4C4
# reps1411144224422

Matrix representation of C42.413D4 in GL6(𝔽17)

0160000
100000
0016000
0001600
0000160
0000016
,
0160000
100000
000100
0016000
000001
0000160
,
14140000
1430000
009002
000820
009290
002808
,
1430000
14140000
000820
009002
0015909
0081580

G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[14,14,0,0,0,0,14,3,0,0,0,0,0,0,9,0,9,2,0,0,0,8,2,8,0,0,0,2,9,0,0,0,2,0,0,8],[14,14,0,0,0,0,3,14,0,0,0,0,0,0,0,9,15,8,0,0,8,0,9,15,0,0,2,0,0,8,0,0,0,2,9,0] >;

C42.413D4 in GAP, Magma, Sage, TeX

C_4^2._{413}D_4
% in TeX

G:=Group("C4^2.413D4");
// GroupNames label

G:=SmallGroup(128,277);
// by ID

G=gap.SmallGroup(128,277);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,758,1123,1018,248,1971,242]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2*b^2,d^2=b,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=a^2*b^-1*c^3>;
// generators/relations

׿
×
𝔽